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Antagonistic linear differential games in a fixed time interval are considered. The performance index of the games considered
consists of the terminal term and integral penalties imposed on the players’ controls. The terminal term is a quadratic form in
the values of the phase vector at the final instant of time. The graphs of the penalty functions are halves of ellipsoid surfaces. It
is proved that differential games of the class considered have a saddle point in the class of programmed strategies. Explicit
expressions are obtained for optimal programmed strategies in terms of the vector of conjugate variables. Effective algorithms
are presented for computing the vector of conjugate variables and it is proved that these algorithms converge. A regular
approximately optimal strategy is constructed for differential games with purely geometrical constraints on the pursuer’s control,
As an example, a differential game in four-dimensional space is considered. © 2004 Elsevier Ltd. All rights reserved.

The analysis of differential games in which geometrical constraints are imposed on the players’ controls
is, technically speaking, an extremely complicated task. Algorithms for solving the problem in the general
case are extremely ineffective [1, 2]. In this paper, we continue the study, begun in [3], of effective
algorithms for constructing guaranteed strategies for the players on the assumption that the sets of
admissible controls are ellipsoids. Unlike [3], where the strategies considered were guaranteed but not
in general optimal, the algorithms considered here will construct optimal guaranteed strategies.

1. THE SADDLE-POINT THEOREM

Let us consider a differential game
x(t) = A(0)x(r) + B, (u(t) + B,(t)v(r), x(0) = x, (1.1)

over the time interval ¢ € [0; 0] with performance index

1

7 = 35 (®)IFx(9) + [(~ Byt u(n) + Bylt, v (1.2)
0

B 1) = VuOJ1-wG, 01, Byt 0) = 1,0, 1-07G (0 (1.3)

where u(t) € R? and v(r) € R? are the players’ control and x(f) € R" is the phase vector of the system.

The following are assumed to be given:

(1) a symmetrical matrix F ¢ R"";

(2) piecewise-continuous matrix-valued functions A4: [0; 9] — R™", B,: [0; 8] — R, B,: [0; 9] —
R*™, G,: [0; 8] - R”*?, G, [0; 9] — R?*9, such that for any ¢ € [0, 9] the matrices G,(¢) and G,(¢)
are symmetric and positive-definite;

(3) piecewise-continuous functions 7,: [0; 9] — R, v,: [0; 8] — R with positive values.

tPrikl. Mat. Mekh. Vol. 68, No. S, pp. 725-745, 2004.
0021-8928/$—see front matter. © 2004 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.jappmathmech.2004.09.002
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The players’ controls are subject to the geometrical constraints
(DG, Hun <1, V(OGMOu(<], te[0;9]

The players know the parameters of the game: 9, xo, 4, B, By, F, G, G, Y, Yo At each instant of
time ¢ the players know the actual value of the phase vector x(¢). The aim of player u (player v) is to
minimize (maximize) the function J.

Since the graphs of the functions u +— B, (¢, #) and v — By(t, 'o) lie on the surfaces of ellipsoids, the
function B, and B, will be called ellipsoidal penalties.

Let R’ denote the space of s-dimensional column vectors, and R™*” the space of m x n matrices. If
x € R", we let |x| denote the Euclidean norm of the vector x: |x| = Vx'x. The operator norm of a

matrixA e R™"willbe denotedby | |4||: ||4|] = max |Ax|;I2is the space of square integrable
xeR" x| =1

functions (in the sense of Lebesgue integration) ¢: [0; 3] » R® and U is the set of admissible programmed
strategies of player u:

U={ue L‘z,: uT(t)Gu(t)u(t) <1 almost everywhere in [0; 8]} (1.4)
Similar, V' will denote the set of set of admissible programmed strategies of player v.

For anyu € U and v € V, we let J(u, v) denote the value of the performance index (1.1)~(1.3) of the
game corresponding to programmed controls # and v.

The quadratic functlon xTFx can be reduced to canonical form. Matrices § € R™*" and F; ¢ R™*™
exist such that F = SF,S, where
F, = E. 0 , r+s=m (1.5)
0 -E,
Here m is the rank of the matrix F, and E} is the k X k identity matrix.
Let the matrix-valued function ®: [0; 3] — R™*" be a solution of the Cauchy problem
&(1) = -P(NA(), P(B) =S (1.6)

In particular, if A(f) = A is a constant matrix, then ®(¢) = S0,
Replacing the phase vector x(¢) by the vector z(f) = ®(f)x(¢), w reduce the differential game (1.1)—~(1.3)
to a differential game with simple dynamics

1) = Bu(tyu(t) + Bu(w(1), 2(0) = z, (1.7)
where
B,(t) = ®()B,(1), Bu(r) = ®()B,(1), zp = (0)x,
and performance index

J = M j (= Bu(t, u(0)) + By(1, v(1)))dt (18)

We define the matrices

9

®(nB,(0G, (BLH® (), P, = [——

P
o) oYu @

——P (t)dt (1.9)
and similarly matrices P,(¢), P, For any u € U, we define an m-dimensional column vector

9
B(u) = jé,,(x)u(:)dt
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Lemma 1.1. Let the matrix P, + P,FP, be positive-semidefinite. Then for any function u € L}
®
[1ul)d" (DG ()u(r)de + BT () F B(w) 20
0

Proof. Let the function u € LIZ, be given. Consider the problem of minimizing the functional

L
i [1,00a" (G, (andr
: _

over all @ € L2 such that B(@) = B(u). Since the matrix v,(f)G,(f) is positive-definite and the set {i € Lf,:
B(&r) = RB(u)} is non-empty, the problem has a solution u,. Using Lagrange multipliers, we will show that a vector
A € R™ exists such that the function u is a stationary point of the functional

L]
&~ [y, (08 (G (a)dt - 22T (B(@) - B(w))
0

that is
V(DG (Dug(t) - Bu(DA = 0
Consequently
= 1 g’
uy(r) = y,,(t)G“ (1)B,(HA
Thus
9 9
[108T DG (u()de 2 [1,(0ug ()G (Dyug(t)dt =
0 0

6 .
el 5 -1, =T _.Tp
=X [{ 7.0 241G (t)Bu(t)dt)x = AP

where the vector A satisfies the condition
0 ®
5 1 = -1, 5T =
PA = | [—=BU0G, (DB.(Ddt A = [Bu(Dug(r)dt = B(u)
O'Yu(t) 4

Therefore,

L ]
[1.0u" (G, (Hu()de + BT (u)F B(w) 2
0

>A"P A +A"B,F P = A(P,+P,F P,)L20
since the matrix P, + P,F,P, is positive-semidefinite.

Lemma 1.2. Let the matrix P, + P,F,P, be positive-semidefinite. Then for any function vy € L2 the
functional u — J(u, vy) is convex on the set of admissible programmed strategies U.

Proof. Letuy,u; € U, A e [0; 1] be given arbitrarily. Put
ug = Auyg+ (1 =Ny, Au = uy-u,

!
() = 2o+ [(Bu(Du(1) + By(m)vy(t))dr, ie {1,2}
0

2= A1+ (1-V)z, Az =12z,-7

8J = AJ(uy, V) + (1= L) J(uy, vy) — J (g, V)
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We have to show that 8J > 0.
Note that

u = uo—(l—yl)Au, Uy = Ug+ AAu, ‘z, =z-(1-A)Az, z = z+AAz

t
Az(1) = [B(v)Au(t)dr, 8] = §,J+8,J
0

where

8,J = %(Az,’(ﬂ)z«",zl(a) +(1=A)23 (9)F 25(®) - 2 (B)F,2(9))

L] .
837 = [(Bu(t, up(1)) = AB, (8, (1)) = (1 = VB, (8, uy())at
0

The expression for §;J can be simplified as follows:
819 = SMe(®) - (1 -MAZ(®))Fy(2(8) - (1-M)Az(B)) +

+(1=A)(2(9) + MAz(8)) F (2(®) + MAz(9)) - 2 () F 2(D)) =

= w-zrﬁ(Azw))TFiAz(ﬁ) (1.10)

‘We shall show that for any ¢ € [0; 0]

Bu(t ug(£)) = A, (8 uy (1) = (1 = M)B,(1, uy (1) 2

A(1-2)
2

2 Tu(D(Bu()) G, (1) Au(r) (1.11)

Indeed, fit ¢ € [0; 9] and put
B o= u (1), @y = uy(r), By = up(t), Au = i,-7
o(t) = B, (4 @y +1Au), where te [~(1-1);A]
Then
B (8 ug()) = AB, (1, u1 (1)) = (1 = M)B, (¢, up(1)) = 9(0) ~Ap(~(1-2)) - (1 -A)p(R)

The function ¢ is continuous in the interval [(1 - A); A] and infinitely differentiable in the interval (-(1 - X);
A). Therefore, using Taylor’s formula with the Lagrange remainder term, we conclude that numbers §;, &, €
(-(1 = A&); A) exist such that

9(0) ~Ap(-(1-1)) - (1 -1)9(R) =

2
= 00 - 0(0) - (1-1g' @ + L5 97, -

2
-(1- ).)((p(O) +A9'(0) + %(P"(ﬁz)) =

= 2B 0e &) + Ao @)

Since

O(¥) = Bu(t, Bp + TAR) = V,(1y1 = (g +TAu) G,(1) (o + TAu)
it follows that

2 o T — 4 —. T ~ — 2
_T0D@u) G(NAu Y, ()((Au) G(1)(ig+TAW))

®"(r) = e D < 1. (0w G ()Au
B.(t, @y + tAu) B,(t, ag + TAu)
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Consequently
A l -A)

9(0) - Ap(~-(1-A)) - (1-M)p(A) 2 1(0)(B0) G, (1) Bu

that is, inequality (1.11) holds.
It follows from condition (1.11) that

AM1-2)"
3

8,J 2 [¥(0Au)T G (DAu(ryd
0

Therefore, according to Eq. (1.10)
5722 M(Iyu(t)(Au(t)) G (D Au(r)dt + (Az(3))'F Az(ﬁ)]

Hence, taking into account that Az(8) = B(Au), we infer the truth of the required inequality 8J = 0 from
Lemma 1.1.

Lemma 1.3. The sets of admissible controls U and V are convex compact sets in the weak topologies
of the spaces L and L , respectively.

Proof. The convexity of the sets U and V follows from the fact that the matrices G,(f) and G(¢) are posmve-
definite and from formula (1.4). We shall show that U is a compact set in the weak topology of the space L The
compactness of V in the weak topology of L is proved in analogous fashion.

Since the matrix G,(¢) is piecewise contmuous in ¢ and positive-definite for ¢ € [0; 0], a number € > 0 exists such
that u’G,(t)u > eu"u for any ¢ € [0; 9], u € R?. Consequently, for any function u € U,

6
Il < & [u7 G eyude < 3 < oo

Hence the set U i is bounded in the norm of the space L2 This implies [4] that the set U is precompact in the
weak topology of L

It is easy to see that the set of admissible programmed strategles U is closed in the strongly topology of the space
L Hence, by virtue of the convexity of U, it follows [5] that U is closed in the weak topology of L Since U is
precompact and closed, it is compact.

Lemma 1.4. For any function vy € L the functional u — J(u, vy) is continuous in the set U in the
sense of the strong topology of the space L

Proof. Let {u,} be a sequence of elements of the set U that is strongly convergent in L to an element z & U.
Since B(u,,) — B(i1) as n — o, the terminal part of the performance index is convergent. ft will therefore suffice
to prove the convergence of the integral part of the functional, i.e. to show that asn — e

9 o
[an(nyde ~ [aryr | L1
0 0
where
a,(r) = Y"(t)Jl “u:(t)Gu(t)u,,(t), a(e) = v,(n l‘l_lr(t)Gu(t)ﬁ(t)
Put
0
A, = [lan-a()|ar, A? = “a (1) -a*(0)|de
0 0

Since {u,} converges to #and the functions v,(f) and G,,(¢) are bounded, it follows that AD - 0 asn —» . Hence,

by the inequality |a,(¢) - a(t)| < \/ |a2(¢) - @(t)|, which holds for the non-negative numbers a,(t), a(t), it follows
that

—&z(t)ldtsjﬁAf,z)—)O as n—roe

that is, condition (1.2) is satisfied.
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Lemma 1.5. Let the matrix P, + P,F,P, be positive-semidefinite. Then for any function vy € L7 the
functional u > J(u, Vo) is lower semicontinuous on the set U in the weak topology of the space L}.

Proof. Let {u;} be a sequence of elements of U converging weakly in Lﬁ to an element i € LIZ,. We have to prove
that

J(@, vy) < lim J(u;, vg)
i— oo

Since {u;} is weakly convergent to &, sequence {#,} exists which is weakly convergent to & and is such that each
element of {ii,} is a convex combination of a finite number of elements of {;}. By Lemma 1.4, J(ii,, o) € J(#, vg)
asn — oo,

By Lemma 1.2, the functional u — J(u, vy) is convex. Therefore

J(&, vy) = lim J(i, vy) < lim J(x;, vy)
n—ee i— o0
Theorem 1.1. Let the matrices P, + P,F,P, and P, — P,F,P, be positive-semidefinite. Then the
differential game (1.1)-(1.3) has a saddle point in the class of programmed strategies:

e U, DeV:VuelU, veV J@v)<J(@, d)<J(u, D)

Proof. It follows from Lemmas 1.1 and 1.5 that the functional u — J(u, v) is convex and lower
semicontinuous on the set U for any v € V. One proves in similar fashion that the functional v —
J(u, v) is concave and upper semicontinuous on the set V' for any u € U. By Lemma 1.3, the sets U and
V are convex and compact. Here, semicontinuity and compactness are understood in the sense of the
weak topology of the space L,Z, and Lg, respectively. The required assertion now follows from von
Neumann’s Theorem [6].

Using the matrix-valued function P,(f) and P,(t), defined in formula (1.9), we defined the following
scalar functions for any ¢ € [0; 3]; y € R™

6.6 W) = SO+ P, 6,6 v) = YD+ P (Y (1.13)

and a vector-valued function

P, (1)y

P,y
o,(1, V)

1.14
GALWW' (114)

0 )
M(y) = Fizo- Fy di+F |
0 0

Theorem 1.2. Let the matrices P, + P,F,P, and P, — P, F,P, be positive-semidefinite. Let the vector
vy be a solution of the equation y = M(y). Then the players’ optimal programmed strategies are defined
by the formulae

a0 G, (DB, (N ()y A OLAGLHON (15
a(t) = ) = .
c.(1, ¥) 0,1, V) (L15)
The value function of the game (its optimal guaranteed result) is defined by the formula
®
P T 1 r
J(8,0) = W= 59 Fiy - [(0,(4 ) - 0,1, W)t (1.16)
0

Proof. Let the functions #(¢) and O(¢) be defined formulae (1.15). We shall show that #(f) and 0O(¢)
are optimal programmed strategies for the players.
It follows from formulae (1.9) and (1.15) that

v .G, 0By _ VPOV

i (1)G,(D(t) = ; -
ot ¥) oot W)
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Therefore, by Eq. (1.13)

Yu(?)

T .
J1-67(1)G (D) = S0V

(1.17)

For any vector # € R” such that u7G,,(t)u < 1, the column vector of partial derivatives of the function
B.(t, u) (defined by the first equality of (1.13)) with respect to the terms of the components of the vector
u is equal to

Bu(tw) _ 1(G.()u
ou J1-u"G (Hu

Hence, by formulae (1.5) and (1.17), it follows that

B, (1, (1)) -1
5. = Bu()v¥ (1.18)

Let Au € Lg. Put

20 = 20+ [(Bu(1)i(1) + BuD)D(D)dr, Az(r) = [Bu)Au(r)ar (1.19)
1} 1}

It follows from formula (1.8) that,ast— 0
J(&t + tAu, V)~ J(a, ) =

4 - T
- I[ZT(IS)FlAz(ﬁ) - (@%’;—@) Au(t)dt) +o(1)
0

Therefore the first variation of the functional u — J(u, 0) at the point # is equal to
3 ?
= aB, (1, a()NT
8,J(Au) = [2T(1‘>)F1 | Bu(t)Au(t)dtJ— | (—ﬁ-(aT“(-)—)) Au(tyd
0 0

Hence, by formula (1.18), it follows that

9
8,J(Au) = [(2"()F, ~y")Bu(t)Au(r)dt (1.20)
0

Formulae (1.9) and (1.15) imply the equality

P (1)y
Gu(t’ \'I)

Hence, by formulae (1.14) and (1.19), it follows that y = M(y) = F.2(1). Therefore, by (1.20), we
infer that the first variation of the functional u — J(u, {) vanishes at the point &. Taking into account
that, as proved in Lemma 1.2, the functional u — J(u, V) is convex, we obtain the inequality J(&, 0) <
J(u, ¥) for any function u € U.

Similarly, for any function v € V, we have an inequality J(&, v) < J(é, ). Consequently, the pair of
programmed strategies iz, ¥ constitutes a saddle point of the differential game, that is, a pair of optimal
strategies of the players.

Since ¥ = F12(0) and F\F; = E,,, it follows that 2(9) = Fyy. Hence 27 (9)F,2(®) = w'Fy. Therefore,
by (1.8), we have

B.(na(r) = -

(1.21)

o
I, )+ 39TFLY = WTA0) + (- Bu(h (1) + Byls, D)) (1.22)
0
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It follows from Eq. (1.17) that

Y2(1)
ot V)

Therefore, by formulae (1.19), (1.21) and (1.22), we obtain

B.(t a(r)) =

J@, )+ 2y Fy =

9
= Y'zg+ [(W (Bu()i(t) + Bu(t)D(0)) - B, (5, (1)) + By (s, D(0)))dr =
0

L T T 2 2
T Y EMY VPOV 1.0 YD)
=Y Z°+J( (LW T oY) 56 W) T Oy, \v)J '

Hence, by (1.13), we obtain equality (1.16).

Remark 1.1. Theorem 1.2 yields the players’ optimal strategies as explicit expressions in terms of the vector of
conjugate variables y. Therefore, in order to determine the optimal strategies, it will suffice to evaluate the vector
y, having solved the equation y = M(y). The vector y has the same meaning as the vector of conjugate variables
in Pontryagin’s Maximum Principle. In this case, the vector y is independent of time, since the differential game
has the simple dynamics (1.7).

In the next two sections, we shall consider methods of solving the equation y = M(y) and investigate
the convergence of these methods. The results will imply the existence of a solution of the equation

v = M(y).

2. COMPUTATION OF THE VECTOR OF CONJUGATE VARIABLES BY
THE SIMPLY ITERATION METHOD

Using the function 6,(¢, y) defined by formula (1.13), we define the function

?
eu(w) = fo (s, w)dr 1)
0
Let D,(y) denote the gradient of the function p ,(y):
' °
P, ()Y
D,(y) = j AT (22)

A similar definition yields the function p ,(y), whose gradient we will denote by D,,(y).
It follows from formula (1.14) that for any vector y € R™,

M(y) = F(zo—D,(y) + D,(vy)) | (23)

Let H,(y) and H,(y) denote the matrices of second derivates (Hessians) of the functions p ,(y) and
@o(W):

]
PO .[P L(Dwy'P L (2.4)

Hu(\l’) =
{Cu(t, \I’) o (t \‘1)

and an analogous formula holds for H(y). _
Lemma 2.1. For any vector y € R™, the matrices H,,(y), H\,(\v) P, - H,(y) and P, - H (V) are positive-
semidefinite.

Proof. We shall show that for any vectory e R™,

o<y H,(w)y<y Buy (25)
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Indeed, by Eqs (1.13) and (2.4),

}(y P (t)y)(vu(t)+w P()Y) - (P (t)\v)
o o)1, ¥)

In addition, the Cauchy-Bunyakovskii inequality

O P POV 2 TP

implies the inequality 0 < y"H,(y)y. This proves condition (2.5). This condition in turn implies that the matrices
H,(y)and P, - H,(v) are positive- -semidefinite. That the matrices H,(y) and P, — H,(v) are positive-semidefinite
can be proved in similar fashion.

Put

= [P, +]2..

Lemma 2.2 Suppose , o
a<l (2.6)

Then the mapping v — M(y) (see (1.14)) is contractive with coefficient o.

Proof. We use Lemma 2.1. Since the matrices P, and H,(y) are symmetric and positive-semidefinite, it follows
that

1B = max By, |Hw|= max Yy H(y)y
ye R™ Iyl =1 yeR™ hl=1

Hence, since the matrix P, — H,(\) is positive-semidefinite, we obtain the inequality ||H,(y)|| < || P,]|. A similar
arguments yields ||H,(w)|| < || Pyll.

Since the Jacobian of the mapping y — M(vy) is Dy(v) = -F H,(y) + F,H(v) ||F1]| = 1, it follows by condition
(2.6) that

[Py (W) < [H (W] + [|Hy(W)] s <1

Hence y — M(v) is a contractive mapping with coefficient o.
Lemma 2.2 implies the following theorem.

Theorem 2.1. If condition (2.6) holds, the equation y = M(y) has a unique solution y € R™. This
solution may be found by simple iterations:

Vier = M(y,), ¥ = lim y, 2.7)
The simple iteration method is convergent for any initial approximation y, € R™ at a linear rate:

e - < ajwo - v| (2.8)

3. COMPUTATION OF THE VECTOR OF CONJUGATE VARIABLES
BY NEWTON’S METHOD

It follows from the relations (2.3) and FF; = E,, that the equation y = M(y) is equivalent to the
equation D(y) = z,, where

D(y) = Fiy + D,(¥) - Dy(¥) 3D

Remark 3.1. Since the values of the vector-valued functions D,(y) and D, (y) equal the gradients of the scalar
functions @ ,(y) and @ ,(V), it follows that the value of the vector-valued function D(y) equals the gradient of the
scalar function

e(y) = %‘VTF W +0,.(¥) - P,(V) (3.2)
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Therefore, the equation D(y) = zj is equlvalent to the statement that the vector of conjugate variables (p isa
stationary point of the function y ~> Q (y) - vz,

Let H(y) denote the Hessian of the function @ (). Since the Hessians of the functions p () and
P () are equal to H,(y) and H,(y), respectively, it follows that

H(y) = F,+ H,(y)-H,(y) (3.3)

Let us partition of the matrices P, and P, into blocks:

u v
P, = P}, P, B, = P, P, (34)
T ’ T )
(P}y) Py (P}y) Py

where PY,, P} € R™", PY, P}, € R, P%, P5, € R**, and the numbers r and s are defined by formula
(1.5).

Lemma 3.1. Let
| Py I<1, “Ph” <1 (3.5)

Then the function p () is convex in y; and concave in y,, where

v=| V'l veR, weR
L 43

Proof. Partition the matrices H(y), H,(v) and H,(y) into blocks as follows:

Hy)=| .
12 Hp
| Hy Hy | H\ H
Hu("’) = w . T ’ Hv(‘v) = 0. T v
(Hpp) Hy (Hyy) Hy

u v rxr U} v rxs ] v SXS$
Hy,H,H e R, HpHpyHjye R, Hy Hy Hype R

By Lemma 2.1, the matrices HY,, H3,, PT; — Hi and P3, — H5, are positive-semidefinite. Hence, by formula (3.3)
and the inequality ||P7}|| < 1, the Hessian of the function P with respect to the components of the vector v,
which equals

H, = E,+ H\,-Hy| = (E,- P}))+ (P}, - H})) + H},

is positive-definite. Consequently, @ is a convex function in y;. The proof that P is a concave function in v, is
similar.

Remark 3.2. 1t follows from Lemma 3.1 and Remark 3.1 that the vector of conjugate variables y is a saddle
point of the function y — P (y) — yz,.

It will be shown below that conditions (3.5) imply invertibility of the matrix H(y). Under the same
conditions, an estimate will be derived for the norm of the inverse matrix of H(y), which will be needed
for the rigorous proof that the algorithm for computing the vector of conjugate variables y is convergent.
To that end we will need the following lemma, which belongs to linear algebra.

Lemma 3.2. Suppose we are given a number p > 0 and a matrix

AL A
A= 14

T
A12 A22
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where A4, € R™*", Aj; € R*°, Ay € R*™°. Let the matrix A be symmetric, the matrix B = Ay — pE,
positive- semldeﬁmte, and the matrlx C = Ay + UE, negative-semidefinite. Then the matrix A4 is invertible
and |47 < 1/

Proof. Given an arbitrary vectorx € R"**, partition it into two vectors

X
x=|"", where x;eR’, x,eR’
X
Then
Ax = v = i _ _ 4T
xX=y= » where Y1 = A“xl +A12X2, y2 = Alle +A22X2
Ya '

Since Ajy =B + UE,, Ay =C- uEs, it follows that
Y = Bxi+Apx,+ux), y, = Alrle + Cxy— lx,
Consequently
lax® = bI* = Jy)|*+ |y)* =
= |Bx; + Alzlez + 2p,x,T(Bxl +Apx)+ uz|xl|2 +
+ 'Alrle + Cx2,2 - Zux;(A,szl +Cxy) + ;,12|x2|2 2
22U(x] (Bx, + A jpx) - x5 (ALx, + Cxp)) +pPln? =
= 2p.(x,TBxl - x;sz) + uzlxl2 > uzlxl2
Therefore, |Ax| > u|x|. Hence the matrix A is invertible and || 4A7}|| < 1/

Let the matrices P}, and P%, be defined by formula (3.4). Define a number

=[Py (3.6)

Lemma 3.3. Suppose condition (3.5) holds. Then for any y € R™, the matrix H(y) is invertible and
I ool < 1

Proof. By Lemma 2.1, the matrices HY;, H3, P{; - Ht; and P%, - H3, are positive-semidefinite. It follows
from the condition || P}; || < 1 - p that the matrix (1 - p)E, — P}, is positive-semidefinite. Hence the matrix

p,:

-RE, = (1-W)E, + Hy - Hy; = (1-W)E, - P})) + (P, - H})) + H},

is also positive-semidefinite. Similarly, the matrix H,, + IE; is negative-semidefinite. Apply Lemma
3.2, we obtain the required assertion.

Lemma 3.4. The mapping y — H(y) is Lipschitz continuous with constant

Ly=Ly+Ly; L= 2]"P (')" I"Pv(t)"

(3.7)
0 alt) 0 0

Proof. Fix arbitrary vectors y, Ay € R™. If follows from formula (2.4) that

3 T
J'y Pu(t)ydt J'(y P (t)‘l’)

T
y H(¥)y =
2 SV o Gy

Using formula (1.13), let us evaluate the derivative

d
dy = 2V H, (v +1Ay)y
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at the pointt = 0

0, T T
d, = —I(y PNV P(0AY)

o SULW)
) ;2(y’Pu<r)w)<y’Pu<r)Aw>,,t +-I"3<y’Pu(t)w)2<w’Pu(t)Aw) p
d ot ¥) f S35 )

By the Cauchy-Bunyakovskii inequality

’ ,<}3@’1’“(:»)ﬁw’Pu(t)Awa’Puuw "
" oit W)

9 T T T 32
. I3(y P, (1)y)JAy P (DAy(y P (t)y) dt<

S
0 o,(t V)
®, T T 0 32
P AP (0)A
sscj(y u(1)y )2 v PMAY 3c(j——-"P“§')" dt)ly|2|A\ll|
0 Yu(t) 0 Yu

where

C = max[ X + =
32 512
e R+ "7 (+H)”

Consequently, the mapping y — H,(y) is Lipschitz continuous with constant Ly. Similarly, the mapping
y > H,(y) is Lipschitz continuous with constant L.

Theorem 3.1. Suppose condition (3.5) holds and let y, € R be a given vector. Suppose the sequence
{w} is defined by Newton’s method,

Vier = Wi+ (HOW)) (20~ D(Y,) (3.8)
The error in the solution of the equation D(y) = z; at step k of method (3.8) is defined as the number

Ly
3 = Z—pZID(Wk) - 2|

where the number 1 and Ly are defined by formulae (3.6) and (3.7), respectively. Suppose the error
of initial approximation is less than 1

Then Newton’s method (3.8) will converge to a solution of the equation D(y) = zj at a quadratic rate:
801 <8 (3.10)

Proof. Since by Lemma 3.4 the matrix-valued function H(y) is Lipschitz continuous with constant
Ly, it follows from Taylor’s formula that

1
|D(Wi s 1) = DW= HW (Wi = W))| S QLH|‘I’k+ 1~ ‘l’kﬁ
From formula (3.8) we obtain D(y;) + H(Wi)(Wk + 1 — Vi) = 2o Therefore

1
[D(Wy 4 1) - 29 SQLHW/(H“VIJZ (3.11)
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Since by Lemma 3.3 ||[H}(y)]| < 1/, it follows by virtue of (3.8) that
[Wes1 = Wi S1D(WL) - 2/0

Hence, by inequality (3.11), we obtain relation (3.10). It follows from (3.9) and (3.10) by induction
that §; < 88 — 0 as k — oo, The theorem is proved.

As is well known, if the initial approximation is insufficiently accurate, Newton’s method may diverge.
It is thus very important to establish an initial approximation from which Newton’s method will converge.
We will consider a possible method of obtaining an initial approximation which ensures that Newton’s
method will be convergent.

Lemma 3.5. Suppose condition (3.5) holds. Define a natural number N by the condition

N 2 2|zg| L/u? (3.12)
Define

-1
2 = kzg/N, ¥ =0, v, =vi+(HWD) (2-DWD), ke{l,.,N}  (3.13)
Then the vector y, = Yy satisfies inequality (3.9).

Proof. As in the proof of inequality (3.10), we will prove by induction that the following inequality holds for
ke {1,...,N}

DY) -2 < 2Jz)/N
Together with condition (3.12), this yields the desired inequality (3.9).

We will now consider the question of the mutual dependence of condition (3.5), which guarantees
the convergence of Newton’s method, and the condition that the matrices P, + P, F,P, and P, - P,F,P,
be positive-semidefinite which, by Theorem 1.1, guarantees the existence of a saddle point of the
differential game 91.1)—(1.3).

Lemma 3.6. Suppose we are given

E, 0 A= Ay Ap

F = , r
0 -E, Ay Ap

where A;; € R, A, € R, Ay € R**°, Let A be a symmetric positive-semidefinite matrix. Then
(1) the inequality ||4x|| <1 implies that the matrix 4 + AFA is positive-semidefinite, and (2) the
converse is false.

Proof 1. Let || A || € 1. We must show that the matrix 4 + AFA is positive-semidefinite. Suppose the contrary:
a vector xg € R™* % xI' (4 + AFA)x, < 0 exists. Since A is symmetric and positive-semidefinite, a matrix § €
R™* ¢+ exists (where m is the rank of 4) such that A = S7S. Consequently, a vector yo = Sxp € R™ exists such
that y? (E,, + SFST)y, < 0. Therefore,

min  y'(E, +SFS")y<0
yeR™: yi=1

Suppose the minimum is obtained for a vector y;. Then a number A exists such that y; is a stationary point of the
Lagrange function

y = Y (Ep+SFST)y-ay'y
that is
(E, +SFST)y, = Ay, (3.14)
Since

min  y'(E,,+SFS")y = y{(E,+SFS")y, = Ay{y, <0
yeR™: =1

it follows that A < 0 and y; # 0.
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It follows from Eq. (3.14) that S'(E,, + SFST)y, = ASTy;, and so (ST + AFST)y; = ASTy,, that is

(E

r+s

+AF)z = Az (3.15)

where z = STy, € R"**. Since the columns of the matrix S7 are linearly independent and y; = 0, it follows that
z# 0.
We write

7

z= , where z;eR’, r,eR’

22

Then Eq. (3.15) becomes a system
Z] + A“Zl —A|222 - kzl =0
L+ Alrzzl -Ap7-Az; = 0

Multiplying the first equation of the system on the left by 27, the second equation by z} and adding, we obtain the
equation

2 (A + (1=A)E,)z; + 23((1 - ME, = Ay)z, = 0 (3.16)

Since A < 0 and the matrix A, is positive-semidefinite, it follows that the matrix 4,; + (1 —A)E, is positive-definite.
Since A < 0 and ||A|| < 1, the matrix (1 - A)E, - A, is positive-definite. Hence Eq. (3.16) contradicts the condition
z#0.

We will now show that the fact that the matrix 4 + AFA is positive-semidefinite does not necessarily imply that
”A22” <1.Let

522 10
22 0-1
Then the matrices A and
A+AFA = || 194 ;

are positive-definite, but ||Ap]| =2 > 1.

Remark 3.3. Suppose the conditions of Theorem 3.1 are satisfied: ||P%|] < 1 and |{P;|| < 1. Then by
Lemma 3.6 the matrix P, + P,F\P, is positive-semidefinite. Similarly, the matrix P, — P F P, is positive-semidefinite.
Hence, by Theorems 1.1 and 1.2, the differential game has a saddle point, and formulae (1.15) and (1.16) for the
optimal strategies and the guaranteed result are valid.

4. A DIFFERENTIAL GAME WITH PURELY GEOMETRICAL
CONSTRAINTS ON THE PURSUER’S CONTROL

In this section, we will consider a differential game (DG) (1.1)-(1.3) such that the terminal term
xT(0)Fx(19)/2 of the performance index is a convex function, that is, the matrix F is positive-semidefinite.
In that case player «, minimizing the performance index, will strive to reduce the length of the phase
vector. Player v will strive to increase the length of the phase vector. In that sense, we shall call player
u the pursuer and player v the evader.

We shall consider a DG for which v,(¢) = 0. Such a DG will be denote by DGy, and referred to as a
DG with purely geometrical constraints on the pursuer’s control.

A DG for which v,(¢) = € 20 will be denote by DG,. For any admissible programmed controls
u e U, v € V, the value of the performance index in DG, will be denoted by J(u, v).

An optimal programmed strategy for the pursuer in a DG, will be denoted by i, and called an
e-strategy for the pursuer in the DG,,.

Such as e-strategy @, has two advantages over an exact optimal guaranteed strategy ;. First, an
e-strategy is a Lipschitz continuous function of time and the game parameters. Second, the algorithm
that computes an e-strategy is simple and effective from a computational standpoint. One should bear
in mind that as € — 0 the Lipschitz constants of the e-strategy tend to infinity, while the rate of
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convergence of the algorithms decreases. Accordingly, the parameter € characterizing the accuracy of
the e-strategy should not be taken too small.

Theorem 4.1. Let the matrix F be positive-semidefinite and ||P,|| < 1. Then the DGy has a saddle
point (i, Op) in the class of programmed strategies. The value of the performance index guaranteed
by the pursuer’s e-strategy is at most the exact value of the optimal guaranteed result plus €0:

Jolitg, V) S Jo(Bg, Dy) +€0 Vve V 4.1)
and the pursuer’s e-strategy is defined by the formula

G, (nB,(n®" (t)y

,/82 + wTPu(t)w

The vector of conjugate variables v is a solution of the equation D(y) = z,, where

B (1) =

+? POV, [P0V
WE VPOV 0V + ¥ Py

Proof. Since the matrix F is positive-semidefinite, it follows that for any strategy v € V the functional
U Jo(u ©) is convex on the set U. Since the matrices P, and E,, — P, are positive-semidefinite, the
same is true of the matrix P, PUF \P,, where F; = E,,,. Hence asin the proof of Lemma 1.2, we infer
that the functional v — Jo(u v) is concave on the set 'V for any strategy u € U.

As in the proof of Lemma 1.5, it can be shown that the functional Jy(u, 1)) is lower semicontinuous
in u and upper semicontinuous in v in the weak topology of the spaces L Lq, respectlvely Since by
Lemma 1.3 the sets U and V are convex and compact in those topologies, Neumann’s Theorem implies
the existence of a saddle point (i1, 0g) of the functional Jj,.

It follows from formulae (1.20) and (1.3) that for any admissible programmed strategies u € U,
ve V.

dt

zp = P(0)xp, D(vy) =

Je(u, ) S Jg(u, V) S J(u, V) + €Y

Therefore, for any admissible programmed strategy v € V, we have the inequalities
Jo(aev v) < Jg(ﬁea 1)) +e0< Je(as’ ﬁe) +&9
Hence, since moreover
Je(itg, Dg) = minmaxJ (u, v) < minmaxJy(u, v) = Jo(iy, Do)

ue Uve V ue UveV

we obtain inequality (4.1). The expression for the e-strategy follows from formula (1.5).
Applying Theorem 3.1 to a DG, we obtain the following theorem, establishing the convergence of

Newton’s method for computing the vector y from which the pursuer’s e-strategy is determined.

Theorem 4.2. Assume that the conditions of Theorem 4 1 are satisfied. Let {y,,} be a sequence defined
by formula (3.8), with the initial approximation y, = yy defined by formula (3.13) with

o
N>2|z:|LH w=1-|B), L= 2"‘("Pu(£’2)” "Pu(’)" ) (4.2)
0

o)

Then the sequence {y,} converges to a solution of the equation D(y) = z, at a quadratic rate:

€

Ly
|D(\|’n+l) Zol< |D(‘Vn) ZO|
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Remark 4.1. Since the matrix P,(f) is independent of y,(¢), formula (1.9) implies that ||P,|| ~ 1/e. Therefore,
for sufficiently small &, inequality (2.6) will fail to hold and the simple iteration method described in Theorem 2.1
may diverge.

Remark 4.2, If the matrix F is positive-semidefinite and moreover ||P,|| < 1, then by Lemma 3.1 the function
@ () is convex. Therefore by Remark 3.1, the vector of conjugate variables y is a minimum point of the function

v (V) - vz,

Remark 4.3. It follows from formula (4.2) that N ~ 1/¢® as € — +0. For small g, therefore, the number N becomes
very large. In that case the algorithm determining the initial approximation yq given by formula (3.13) may be very
time- consummg It may well be more effective to use well known convex optlmlzatlon algorithms to approx1mate
the minimum point of the convex function ¥ — P (y) - y’z,. Experience in numerical computations shows that in
many case Newton’s method (3.8) converges from the initial approximation y, = 0. In such cases there is no longer
any need to run the time-consuming algorithm (3.13).

5. DIFFERENTIAL GAMES WITHOUT GEOMETRICAL CONSTRAINTS
ON THE PLAYERS’ CONTROLS

We will now consider the limiting case of DG (1.1)—(1.3) with
G,(1) = EGo(t), Yu(t) = /e, £—+0 (5.1)
where GJ(¢) is a given symmetric positive-definite matrix which is a piecewise-continuous function of

the time ¢.
Having in mid the limit relation

B,(t, V) = éAll-u’Gv(z)u = %—%UTG?,(t)v+o(l) as €— 40

let us say that the limiting case of DG (1.1)—(1.3) under conditions (5.1) is DG (1.1), (1.2), where

B.(tu) = Y ()1 -u'Gu Byt v) = --zl-v’G‘,’,(t)v (5.2)

We define a matrix-valued function

-1
PY(5) = ®(1)B()(Go(1)” BL(H® (1) (5.3)
Then, in accordance with the notation (1.9),

P(t) = ®(1)B, (t)G"'(z)BT(:)cb’(t)-
9

P, = jy P, P, = ;‘;Pv(t)dt

Repeating the arguments used to prove Theorems 1.1 and 1.2, we obtain the following theorem.

Theorem 5.1. Let the matrices P, + P,F,P, and P, - P F,P, be positive-semidefinite. Then DG (1.1),
(1.2), (5.2) has a saddle point in the class of programmed strategies. The players’ optimal programmed
strategies are defined by the formulae

G.'()BI(n® (Y
o, (V)

at) = ., B = (G0 BIn®T()y (5.4)

The vector of conjugate variables y is determined from the equation D(\y) = z,, where

L
P (1
DY) = Fyy+ [S40¥

J 0 w)dt—Pu\l’, Zp = ©(0)xp
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The value function of the DG (the optimal guaranteed result) is defined by the formula
. 8
(@, D) = ¥'zg-3¥ Fiy - [ Jo, (0 y)dt (5.5)
0

The solution of the equation D(y) = z5 may be found by a simple iterative method or by Newton’s
method, as was done in Theorems 2.1 and 3.1.

Similar reasoning may be applied to the limiting case of DG (1.1)-(1.3) under conditions (5.1) with
v replaced by u.

In the limiting case in which conditions (5.1) hold simultaneously with the same conditions for player
u, DG (1.1)-(1.3) becomes the well-known linear-quadratic DG [1, p. 160].

6. AN EXAMPLE OF A DIFFERENTIAL GAME

As an example, we will consider two DGs of the form (1.1)—(1.3) with parametersn = 4,p =g = 2,
0=12,F = E;, G, = G, = Ep, 7,(t) = 16

9 0.1 09 -0.1 0.1
o=l aw=]-10-0202 03
8 03 01 01 15

7 -0.1 02 -1.4 -03

10 02 0.7 0.1

By =] 03 03] pyo| 12 02
0.1 09 0.1 -0.3

0.5 0.2 -03 1.1

For the first DG, y.(t) = 5, while for the second, y2(¢) = 0.5.
Numerical computations yield the following values of the vectors of conjugate variables for the first
and second DGs

-9.03 -7.23
y' = | 16s| 2o | lu
0.178 0.376
6.06 478

Figure 1 illustrates the hodographs of the optimal control vectors for players # and v. Figure 2 shows
projections of the trajectories of the phase vector x(¢) corresponding to optimal controls. The graphs
for the first DG are the solid curves while those for the second are the dashed curves.

The graphs shown in the figures clearly demonstrate some properties of DGs with ellipsoidal
penalties. The DGs considered are distinguished only by the penalty coefficient, which indicates the
dependence of the performance index on player u’s control. Since the penalty coefficient in the second
DG is smaller, player u’s optimal control in that DG is greater in absolute value and closer to the
boundary of admissible values (see Fig. 1). As a result, at the final instant of time the absolute value
of the phase vector in the second DG is less than in the first (see Fig. 2).

In these DGs, the terminal term of the performance index equals the squared length of the phase
vector. The derivative of the performance index with respect to the phase vector will therefore decrease
as the absolute value of the phase vector decreases. Since in the second DG the absolute value of the
phase vector at the final instant of time is smaller, the control of player v in the second DG has less
influence on the value of the terminal term than in the first. In the second DG, therefore, it is more
advantageous for player v to choose a control of smaller absolute value than in the first game. In this
way player v can decrease the penalty term of the performance index. It can be seen in Fig. 1 that the
absolute value of the optimal control of player v in the second DG is indeed less than in the first.
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