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Antagonistic linear differential games in a fixed time interval are considered. The performance index of the games considered 
consists of the terminal term and integral penalties imposed on the players' controls. The terminal term is a quadratic form in 
the values of the phase vector at the final instant of time. The graphs of the penalty functions are halves of ellipsoid surfaces. It 
is proved that differential games of the class considered have a saddle point in the class of programmed strategies. Explicit 
expressions are obtained for optimal programmed strategies in terms of the vector of conjugate variables. Effective algorithms 
are presented for computing the vector of conjugate variables and it is proved that these algorithms converge. A regular 
approximately optimal strategy is constructed for differential games with purely geometrical constraints on the pursuer's control. 
As an example, a differential game in four-dimensional space is considered. © 2004 Elsevier Ltd. All rights reserved. 

The analysis of differential games in which geometrical constraints are imposed on the players' controls 
is, technically speaking, an extremely complicated task. Algorithms for solving the problem in the general 
case are extremely ineffective [1, 2]. In this paper, we continue the study, begun in [3], of effective 
algorithms for constructing guaranteed strategies for the players on the assumption that the sets of 
admissible controls are ellipsoids. Unlike [3], where the strategies considered were guaranteed but not 
in general optimal, the algorithms considered here will construct optimal guaranteed strategies. 

1. T H E  S A D D L E - P O I N T  T H E O R E M  

L e t  u s  c o n s i d e r  a d i f f e r e n t i a l  g a m e  

~(t) = A( t )x ( t )  + Bu(t)u(t  ) +  B v ( t ) v ( t ) ,  x(O) = x o 

over the time interval t ~ [0; t~] with performance index 

o 

J = ~xr(O)Fx(O) + I ( -  ~ ( t ,  u(t))  + ~v(t, l~(t)))dt 

o 

(1.1) 

(1.2) 

~u(t, u)  = ~&(t)~ /1  - urGu(t)u, ~v(t, v) = ]%(t)~/1 - vroo(t)v (1.3) 

where u(t) ~ R p and v(t) ~ ~q are the players' control and x(t) ~ R n is the phase vector of the system. 
The following are assumed to be given: 
(1) a symmetrical matrix F ~ ~n×n; 
(2) piecewise-continuous matrix-valued functionsA: [0; O] ~ R n×n, Bu: [0; O] ~ R n×p, B~: [0; O] ---) 

~nxq, Gu: [0; O] ~ ~pxp, Gv: [0; t~] ---) ~qxq, s u c h  t h a t  f o r  a n y  t ~ [0, O] t h e  m a t r i c e s  Gu(t) and G~(t) 
are symmetric and positive-definite; 

(3) piecewise-continuous functions %: [0; O] ~ R, %: [0; O] ~ ~ with positive values. 

tPn'kl. Mat. Mekh. Vol. 68, No. 5, pp. 725-745, 2004. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
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The players' controls are subject to the geometrical constraints 

ur(t)Gu(t)u(t) < 1, vr(t)Gv(t)v(t)  < 1, t ~ [0; O] 

The players know the parameters of the game: O, Xo, A,  Bu, B~, F, Gu, G~, ?u, ?~. At each instant of 
time t the players know the actual value of the phase vector x(t). The aim of player u (player ~) is to 
minimize (maximize) the function J. 

Since the graphs of the functions u ~ 13,(t, u) and ~ ~ 13~(t, ~) lie on the surfaces of ellipsoids, the 
function ~u and ~ will be called ellipsoidal penalties. 

Let R s denote the space of s-dimensional column vectors, and R m×n the space of m x n matrices. If 
x ~ R n, we let Ix l denote the Euclidean norm of the vector x: Ix l = x'~-~-x. The operator norm of a 
matrixA ~ ~m×nwil lbedenotedbyllAI I: I IAII = max [Axl;L2is the space of square integrable 

x e  R n : l x l  = 1 

functions (in the sense of Lebesgue integration) cp: [0; O] ~ R s and U is the set of admissible programmed 
strategies of player u: 

2 ur(t)Gu(t)u(t)_< 1 almost everywhere in [0; O]} (1.4) U = {u e LI,: 

Similar, Vwill denote the set of set of admissible programmed strategies of player ~. 
For any u e U and a9 e V, we let J(u, ~) denote the value of the performance index (1.1)-(1.3) of the 

game corresponding to programmed controls u and ~. 
The quadratic function xrFx can be reduced to canonical form. Matrices S ~ ~mxn and F1 e R mxm 

exist such that F = SrF1 S, where 

rr r°ll 
= , r + s  = m ( 1 . 5 )  

0 - E  s 

Here m is the rank of the matrix F, and Eg is the k × k identity matrix. 
Let the matrix-valued function ~: [0; O] ---> R m×n be a solution of the Cauchy problem 

tb(t) = -¢P(t)A(t), ~ ( 0 )  = S (1.6) 

In particular, irA(t) = A is a constant matrix, then O(t) = Se 4(°- O. 
Replacing the phase vectorx(t) by the vector z(t) = ~(t)x(t), w reduce the differential game (1.1)-(1.3) 

to a differential game with simple dynamics 

~(t) = Bu(t)u(t)+Bv(t)o(t) ,  z(0) = z0 (1.7) 

where 

Bu(t) = ~(t)Bu(t),  Bo(t) = ¢P(t)Bv(t), z0 = tb(0)x0 

and performance index 

zr(o)Flz(O) o 

J = 2 + f ( -  [3~(t, u(t)) + f3o(t, o(t)))dt (1.8) 
0 

We define the matrices 

0 

Pu(t) = O(t)Bu(t)G-ui(t)Bru(t)~r(t), Pu = f~--~Pu( ' )  dt (1.9) 

0 

and similarly matrices P~(t), P~, For any u ~ U, we define an m-dimensional column vector 

0 

~(u )  = IBu(t)u(t)dt 
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Lemma 1.1. Le t  the matr ix  Pu + euFIPu be  posi t ive-semidefini te .  T h e n  for  any funct ion u e L 2 

0 

~%,(t)ur (t)G~( t)u(t)dt + ~ r  (u )F l~ (u )  > 0 

0 

Proof. Let the function u ~ L~ be given. Consider the problem of minimizing the functional 

~, Iy,(t)fZ(t)Gu(t)~(t)dt 
0 

over all t~ ~ L~ such that ~(~) = N(u). Since the matrix %(t)Gu(t) is positive-definite and the set {~ e L~: 
~(li) = ~(u)} is non-empty, the problem has a solution u0. Using Lagrange multipliers, we will show that a vector 
X ~ R m exists such that the function u0 is a stationary point of the functional 

~ ~lu(t)~r(t)G,(t)f~(t)dt- 2xr (~(~)  - ~(u) )  

0 

that is 

Consequently 

Thus 

- T  
~lu(t)G~(t)Uo(t ) -  B,(t)X = 0 

1 - I  - T  
Uo(t) = ..-'7-s., G, (t)B,(t)X 

furL) 

0 0 

ST,( t)ur ( t)Gu( t)u( t)dt >_ S~lu( t)ur ( t)G,( t )Uo( t)dt = 
0 0 

= ~r B,(t)G-,l(t)Br(t)dt X = XrPuX 
[o't.( t~ ) 

where the vector X satisfies the condition 

Pu~ = Bu(t)G-.1(t)Bru(t)dt X = IBu(t)Uo(t)dt = ~(u) 

Therefore, 
0 

f 'l.(t)ur ( t)Gu(t)u(t)dt + ~ r  (u)Fl~(u) > 
0 

> xrP.X + Xrp .FIP .X = Xr(P. + P.FIP.)X-> 0 

since the matrix Pu + P~F1Pu is positive-semidefinite. 

2 Lemma 1.2. Le t  the matr ix  Pu + PuF1Pu be  posi t ive-semidefini te .  T h e n  for  any funct ion ~0 ~ Lq the 
funct ional  u ~ J(u, ~0) is convex on the set o f  admissible p r o g r a m m e d  strategies U. 

Proof. Let Ul, u 2 E U,  ~, e [0;  1] be given arbitrarily. Put 

U 0 = ~,Ul + ( 1  --~.)U2, AU -- U2-U 1 

t 

z : t )  = Zo + p/~.(x)u~(x) +/~o(X)Vo(x))dx, 
0 

Z = ~.ZI+(1-~,)Z 2, AZ = Z2-Z I 

i~  {1,2} 

8J = K/(u 1, v 0) + (1 -)~)J(u 2, Vo)- J(uo, Vo) 
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We have  to show tha t  f iJ  ~ 0. 
N o t e  that  

U 1 = U o - ( 1 - X ) A u ,  //2 = U 0 + ~ ' A R '  Z t -- Z -- (1- -  ~,)AZ, Z 2 = Z+XAZ 

where  

t 

Az(t)  = SBu(Z)Au(x)d'L ~J  = ~ l J + 8 2 J  

0 

~ i J  = ~ ( ~ . z T ( O ) F I Z I ( O )  + (1 - ~.)zT(L~)FIZ2(O) -zr(O)F~z(O)) 

0 

~2 J = f(~u(t,  Uo(t))- ~,~u(t, U l ( t ) ) -  (1 -2L)f~u(t, u2(t)))dt 
o 

T h e  express ion for  81J can be simplif ied as follows: 

~t J = ~(~,(z(O) - (1 - ~,)AZ(O))TFI(z(O) - (1 - ~ )Az(O))  + 

+ ( 1 - ~,)(z(O) + ~,Az(O))rFI(Z(O) + ~Az(O))  - zT(o)Ftz(O))  = 

= X(12- X)(Az(o) ) rFIAz(O ) 

We shall show that  for  any t e [0; O] 

~u(t, Uo(t)) - ~L~u(t, Ul( t )  ) -- (1 - X)~u(t, u2(t)) > 

> Z.(12 X)Tu(t)(Au(t))rGu(t)Au(t)  

Indeed ,  fit t ~ [0; O] and put  

T h e n  

?*l = ul(t) ,  ~2 = u2(t),  ~o = Uo(t), Au = ~2-~t 

9(X) = ~,(t, Uo + XAu), w h e r e  x ~ [ - (1  - X); X] 

~u(t, Uo(t)) - ~ u ( t ,  u I (t)) - ( 1 - X)f~u(t, u2(t)) = ~0(0) - ~,q~(-( 1 - ~.)) - ( 1 - ~L)q~(2t) 

(1.10) 

(1.11) 

q¢'(x) = - 

it fol lows that  

- -  - -  T m 

qJ('O = f~u( t, ?% + xAu) = Tu(t),/1 - (Uo + xAu) Gu(t)(f~ o + ' tAu) 

2 -- T -- 4 -- T 

Tu(t)(Au) Gu(t)Au ~lu(t)((Au) Gu(t)(~ o+ *Au)) 2 
- _<-Tu(t)(Au) Gu(t)Au 

~u( t, Uo + "cA--u) ~3u(t, 74 O + ZA-u) 

Since  

T h e  func t ion  ~p is con t inuous  in the  interval  [-(1 - ~.); ~] and  infinitely d i f ferent iab le  in the  interval  (-(1 - ~.); 
~.). The re fo r e ,  using Taylor 's  fo rmula  with the  Lagrange  r e m a i n d e r  term,  we conc lude  that  number s  ~l, ~2 E 
( - (1  - ;L); ~.) exist such that  

~o(0 ) -  k g ( - ( 1  - ~L)) - (1 - 2L)9(~L) = 

= q~(O) - X(~o(O) - (I - Mq¢(O) + (~q¢'(~,))- 

Z, 2 

X( 1.-- 2L)(( 1 - ~k)q~"(~i) + 2Lq~"(~2)) 
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Consequently 

q~(O) - ~.~(-( 1 - ~,)) - ( 1 - X)q~(~,) > K( 1 ;  ~.)~u(t)(~-u)rGu(t)~uu 

that is, inequality (1.11) holds. 
It follows from condition (1.11) that 

0 

82 J >_ ~.(1; ~') f ¥.( t)Au( t) ) r G.( t)Au( tldt 
0 

Therefore, according to Eq. (1.10) 

8J > ~.(1; ~.)(i?.(t)(Au(t))r G.(t)Au(t)dt + (Az(o))r F,Az(O)l 

Hence, taking into account that Az(O) = ~(Au), we infer the truth of the required inequality 8J > 0 from 
Lemma 1.1. 

Lemma 1.3. The  sets o f  admissible controls  U and V a r e  convex compact  sets in the weak  topologies 
o f  the spaces L 2 and L 2, respectively. 

Proof. The convexity of the sets U and V follows from the fact that the matrices Gu(t) and G~(t) are positive- 
definite and from formula (1.4). We shall show that U is a compact set in the weak topology of the space L 2. The 
compactness of V in the weak topology of L 2 is proved in analogous fashion. 

Since the matrix Gu(t) is piecewise continuous in t and positive-definite for t e [0; 0], a number e > 0 exists such 
that urGu(t)u >_ euru for any t ~ [0; O], u ~ R ?. Consequently, for any function u ~ U, 

O 

Hu['2L2p<-~ftgTGu(f)udl<-~<+" 

0 

Hence the set U is bounded in the norm of the space L 2. This implies [4] that the set U is precompact in the 
weak topology of L 2. 

It is easy to see that the set of admissible programmed strategies U is closed in the strongly topology of the space 
2 2 L~. Hence, by virtue of the convexity of U, it follows [5] that U is closed in the weak topology of L~. Since U is 

precompact and closed, it is compact. 

Lemma 1.4. For  any function u0 ~ Lq 2, the functional  u ~-> J(u, a)0) is cont inuous  in the set U in the 
sense of  the strong topology of  the space L 2. 

2 Proof. Let {un} he a sequence of elements of the set U that is strongly convergent in L~ to an element ~ ~ U. 
Since ~(Un) --9 ~]~(/~) as n ~ , the terminal part of the performance index is convergent. It will therefore suffice 
to prove the convergence of the integral part of the functional, i.e. to show that as n ~ o~ 

0 0 

Ian(t)d, --~ f?t(t)d, (1.12) 
0 0 

where 

Put 

an(t ) = ~/.(t)~/1 - urn(t)Gu(t)Un(t), ~(t) = ~/.( t) , f l-~r(t)G.(t)~(t)  

0 0 

a n = . [ l a n ( t ) - ? t ( t ) l d t ,  A(2)= 
0 0 

Since {Un} converges to fi and the functions 7u(t) and Gu(t) are bounded, it follows that A~ ) ~ 0 as n ~ oo. Hence, 
/ 

by the inequality a n ( t  ) - ti(t) I _< "~ la2(t) - ti2(t) l, which holds for the non-negative numbers an(t), ~(t), it follows 
that 

0 

an<- fJla (t)-n2(t)lat<- 
0 

as n ---)** 

that is, condition (1.2) is satisfied. 
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Lemma 1.5. Let the matrix Pu + PuF1Pu be positive-semidefinite. Then for any function Vo s L2 the 
functional u ~ J(u, Vo) is lower semicontinuous on the set U in the weak topology of the space L 2. 

Proof. Let {ui} be a sequence of elements of U converging weakly in Lp 2 to an element f ~ Lp 2. We have to prove 
that 

J(~, Vo) _< lim J(ui, I)0) 
i ---~ ~ 

Since {Ui} is weakly convergent to f, sequence {fin} exists which is weakly convergent to f and is such that each 
element of {un} is a convex combination of a finite number of elements of {ui}. By Lemma 1.4, J(~,, v0) ~ J(f, a)0) 
as n--+ oo. 

By Lemma 1.2, the functional u ~ J(u, v0) is convex. Therefore 

J(fi,  o0) = lira J(fin, o0) < lira J(u~, oo)  

Theorem 1.1. Let the matrices P~ + PuFIPu and P~ - P~FIP ~ be positive-semidefinite. Then the 
differential game (1.1)-(1.3) has a saddle point in the class of programmed strategies: 

3fie U, ~ •  V : V u •  U, v •  V J(fi, o ) < J ( f i , ~ ) < J ( u , b )  

Proof. It follows from Lemmas 1.1 and 1.5 that the functional u ~ J(u, ~) is convex and lower 
semicontinuous on the set U for any a~ e V. One proves in similar fashion that the functional v 
J(u, "o) is concave and upper semicontinuous on the set Vfor any u ~ U. By Lemma 1.3, the sets U and 
V are convex and compact. Here, semicontinuity and compactness are understood in the sense of the 

2 2 weak topology of the space L;, and Lq, respectively. The required assertion now follows from von 
Neumann's Theorem [6]. 

Using the matrix-valued function Pu(t) and P~(t), defined in formula (1.9), we defined the following 
scalar functions for any t ~ [0; O]; ~g ~ ~m 

a,( t ,  ¥ )  = J72.(t) + yrpu( t )  ¥ ,  ao(t, V) = .f720(t) + ~IrPo(t)~l (1.13) 

and a vector-valued function 

0 0 7"k  / % _ . .  11~ / x . . _  _ t r u ( t ) ¥  . _ t r v ( t ) ~ g  . 
M ( V )  = FlZo- e ~ j ~ a t  + e l j ~ a t  

o o 

(1.14) 

Theorem 1.2. Let the matrices P, + PuF1Pu and fly - fi~FlP ~ be positive-semidefinite. Let the vector 
~t be a solution of the equation ~ = M(~). Then the players' optimal programmed strategies are defined 
by the formulae 

G-u'(t)Bru(t)~r(t)~t G-vl(t)Brv(t)~r(t)V 
~(t) = ~,(t,  ¥ )  , b(t) = ~o(t , ~) (1.15) 

The value function of the game (its optimal guaranteed result) is defined by the formula 

0 
1 r 

J(fi, f~) = ~rz  0 -  ~ F l ~ - f ( ~ , ( t ,  ~)  - ~o(t, ~))dt  
0 

(1.16) 

Proof. Let the functions t~(t) and 13(t) be defined formulae (1.15). We shall show that fi(t) and a3(t) 
are optimal programmed strategies for the players. 

It follows from formulae (1.9) and (1.15) that 

(t)B~(t)~ IgrPu(t)~ 
fir(t)Gu(t)~(t) = 

~](t, Ig) ~ ( t ,  ¥ )  
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Therefore, by Eq. (1.13) 

J1 r l~,(t) - f i  (t)Gu(t)fi(t) = flu( t, U) (1.17) 

For any vector u ~ ~P such that urGu(t)u < 1, the column vector of partial derivatives of the function 
~u(t, u) (defined by the first equality of (1.13)) with respect to the terms of the components of the vector 
u is equal to 

~u( t ,  u) yu(t)Gu(t)u 

bu AJl - urG,(t)u 

Hence, by formulae (1.5) and (1.17), it follows that 

bl3,(t, fi(t)) - r 
bu = B"(t)U 

Let Au ~ Lp 2. Put 

t 

~(t) = Z0 + I(Bu(z)fi(x) + Bv(x)¢)(Z))d~, 
0 

It follows from formula (1.8) that, as x ~ 0 

J(f¢ + xAu, f)) - J(fi, f)) = 

t 

Z~z(t) = ~ . ( x )Au(x )dx  
o 

= Ix ~r(O)F1Az(O)-i(~u(~(t)!o ) ]+o(x)rAu(t)dt 

Therefore the first variation of the functional u ~-~ ](u, ~)) at the point/~ is equal to 
'0 '0 ^ T 

~)uJ(Au) = ,('zT(O)Fl!'u(t'Au(t)dt]-I~u(~2 o( ) Au(t)dt 

Hence, by formula (1.18), it follows that 

o 

~).J(Au) = I (~ r (O)F i -u r )Bu( t )Au( t )d t  
o 

(1.18) 

(1.19) 

(1.20) 

Formulae (1.9) and (1.15) imply the equality 

B,(t)~(t) - 
Pu(t)U 
~.(t ,  U) 

(1.21) 

Hence, by formulae (1.14) and (1.19), it follows that U = M(U) = F12(O). Therefore, by (1.20), we 
infer that the first variation of the functional u ~-~ J(u, f~) vanishes at the point ft. Taking into account 
that, as proved in Lemma 1.2, the functional u ~ J(u, f~) is convex, we obtain the inequality J(fi, a3) < 
J(u, ¢J) for any function u ~ U. 

Similarly, for any function a) ~ V, we have an inequality J(fi, v) < J(fi, a3). Consequently, the pair of 
programmed strategies fi, a3 constitutes a saddle point of the differential game, that is, a pair of optimal 
strategies of the players. 

Since U = FI~(O) and F1F1 =Em it follows that ~(O) = FlU. Hence zT(O)FlZ(O) = uTFIU . Therefore, 
by (1.8), we have 

0 
1 r 

J(fi, b) + ~U FlU = Urz(O) + I ( -  13,(t, fi(t)) + ~v(t, b(t)))dt (1.22) 
0 
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It follows from Eq. (1.17) that 

l~,(t, fi(t)) = 
T](t) 

t~u(t, ¥)  

Therefore, by formulae (1.19), (1.21) and (1.22), we obtain 

1 r 
J(~, f)) + ~¥  F l Y  = 

0 

= ~rz  o + J(¥r(Bu(t)~(t)  + Bv(t)f)(t)) - ~,,(t, ~(t)) + ~u(t, f)(t)))dt = 
0 

= ¥ r z 0  + Y r p , ( t ) ¥  wreo( t )¥  T2uft) T2v(t) ) 
flu( t, V) + t~v(t, q) flu( t, q--------) + ~ ) J d t  

Hence, by (1.13), we obtain equality (1.16). 

Remark 1.1. Theorem 1.2 yields the players' optimal strategies as explicit expressions in terms of the vector of 
conjugate variables ~. Therefore, in order to determine the optimal strategies, it will suffice to evaluate the vector 
~, having solved the equation V = M(~). The vector ¥ has the same meaning as the vector of conjugate variables 
in Pontryagin's Maximum Principle. In this case, the vector ¥ is independent of time, since the differential game 
has the simple dynamics (1.7). 

In the next two sections, we shall consider methods of solving the equation W = M(W) and investigate 
the convergence of these methods. The results will imply the existence of a solution of the equation 
W = M(V). 

2. C O M P U T A T I O N  OF T H E  V E C T O R  OF C O N J U G A T E  V A R I A B L E S  BY 
T H E  SIMPLY I T E R A T I O N  M E T H O D  

Using the function ~u(t, W) defined by formula (1.13), we define the function 

0 

eu(V) = f°u(t, ~)dt 
0 

Let Du(~) denote the gradient of the function e u(~): 

(2.1) 

° •  P, ( t )~  . 
0 , ( ¥ )  = a ~ a t  (2.2) 

0 

A similar definition yields the function e ~(~), whose gradient we will denote by D~(~). 
It follows from formula (1.14) that for any vector ~ ~ R m, 

M(¥)  = FI(z o -  D , (¥ )  + Dr(y )  ) (2.3) 

Let Hu(W) and H,0(~) denote the matrices of second derivates (Hessians) of the functions e u(~t) and 
e ~(V): 

0 0 T 

Hu(V) = f Pu(t) d t - f  Pu( t )¥¥ 'Pu ( t )d t  (2,4) 
j 3 

Jo a"(t' ¥)  o a,(t,  ¥)  

and an analogous formula holds for Hv(W). 
Lemma 2.1. For any vector W ~ ~m, the matrices Hu(w), H~(W), ['u -Hu(w) and P v - H u ( ¥ )  are positive- 

semidefinite. 

Proof. We shall show that for any vectory e R rn, 

0 <_ yrttu(¥)y < yr~uy (2.5) 
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Indeed, by Eqs (1.13) and (2.4), 

T 2 
(Y Pu(t)~) dt< yrH~(w)y = i(y  P~(t)y)(~&(t) +~rpu( t )¥)-  r 2 

o a~(t, ¥) 
d T 

< fY" Pu(t)y 
s 7u(t) dt = yrpuy 
o 

In addition, the Cauchy-Bunyakovskii inequality 

(yr eu(t)y)(~r pu(t)~) > (yr Pu(t)~)2 

implies the inequality 0 < yrH~(v)y. This proves condition (2.5). This condition in turn implies that the matrices 
Hu(V) and P, -Hu(~) are positive-semidefinite. That the matrices H,(~) and Pv -H~(~) are positive-semidefinite 
can be proved in similar fashion. 

Put 

Lemma 2.2 Suppose 
a < 1 (2.6) 

Then the mapping ~ ~ M(~)  (see (1.14)) is contractive with coefficient a. 

Proof. We use Lemma 2.1. Since the matrices Pu and H,(~) are symmetric and positive-semidefinite, it follows 
that 

IlP.II = max yrpuy, IIH.<v)II = m a x  yTHu(¥)y 
y ~  Rm: [y[ = 1 y e  Rm: lYl = 1 

Hence, since the matrix P~ -Hu(~) is positive-semidefinite, we obtain the inequality IIHu(v)II -< II& II. A similar 
arguments yields IIH~(v)ll <-II&ll. 

Since the Jacobian of the mapping W ~-> M(W) is DM(W) = -F1H~(w) + F1Hv(~) I IFlll = 1, it follows by condition 
(2.6) that 

IIDM<¥)II <_ IIH.(V)II + IIH~(v)II _< a < 1 

Hence W ~-> M(¥) is a contractive mapping with coefficient c~. 
Lemma 2.2 implies the following theorem. 

Theorem 2.1. If condition (2.6) holds, the equation W = M(W) has a unique solution ¥ ~ R m. This 
solution may be found by simple iterations: 

• tc+l = M(~k), • = limw~ (2.7) 
k -.+ 00 

The simple iteration method is convergent for any initial approximation W0 ~ Rm at a linear rate: 

Iw~- vl -< dim0 - wl (2.8) 

3. C O M P U T A T I O N  OF T H E  V E C T O R  OF C O N J U G A T E  V A R I A B L E S  
BY N E W T O N ' S  M E T H O D  

I t  follows from the relations (2.3) and F1F 1 = Em that the equation ~ = M(~)  is equivalent to the 
equation D(W) = z0, where 

D(W) = FIW + D.(W) - Do(W) (3.1) 

Remark 3.1. Since the values of the vector-valued functions Du(V) and D,(V) equal the gradients of the scalar 
functions e u(~) and e ,(~), it follows that the value of the vector-valued function D(~) equals the gradient of the 
scalar function 

1 r 
~(¥)  = ~¥  F ,¥  +1~.(¥)- 1~.(¥) (3.2) 
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Therefore, the equation D(~) = z0 is equivalent to the statement that the vector of conjugate variables (p is a 
stationary point of the function ~ ~ e (v) - ~TZo" 

Let H(V ) denote the Hessian of the function e (V). Since the Hessians of the functions e u(~) and 
e ~(~) are equal to Hu(~) and H~(~), respectively, it follows that 

H(~)  = F l + H,,(~) - Hv(¥)  (3.3) 

Let us partition of the matrices/~u and/~u into blocks: 

~u = Pll PI2II ' ~v = Pll P~2 
(3.4) 

(PI2) T P~2 1[ (P~2) T P2u2 

whereP~l ,P~le  ~rxr, plu2, P~2E ~rxs, u ~ ~sxs, P22, P22 ~ and the numbers r and s are defined by formula 
(1.5). 

Lemma 3.1. Let 

11P22 II < 1. eVl < 1 (3.5) 

Then the function e (V) is convex in ~1 and concave in ~2, where 

= ¥2~1 , ¥ 1 ~ R ' ,  ¥2 ~ R  ~ 

Proof. Partition the matrices H(V), Hu(~) and H,(~) into blocks as follows: 

Hu(W)=II H~I H~2[[ [] H~IHI2 ] 
. r ' H d ¥ )  = ~ r 

(HI2) /-~22 (Hi2) n~2] 

u o rxr u o rx$ u u ~sxs 
HII, HII, HII E ~ , /'/12, HI2, HI2 E R , H22, H22, H22 E 

By Lemma 2.1, the matrices H~'I, H~2, PlVl -H1~1 and P~2 -H~2 are positive-semidefinite. Hence, by formula (3.3) 
and the inequality lIP]'1 II < 1, the Hessian of the function e with respect to the components of the vector V1, 
which equals 

U 1) I) tl U U 
Hil = Er+HIt-Hll = (Er-Pll)+(Pll-Hll)+Htl 

is positive-definite. Consequently, e is a convex function in ~1. The proof that e is a concave function in ~2 is 
similar. 

Remark 3.2. It follows from Lemma 3.1 and Remark 3.1 that the vector of conjugate variables ~ is a saddle 
point of the function ~ ,--> I~ (~) - ~z0. 

It will be shown below that conditions (3.5) imply invertibility of the matrix H(~).  Under the same 
conditions, an estimate will be derived for the norm of the inverse matrix of H(~),  which will be needed 
for the rigorous proof that the algorithm for computing the vector of conjugate variables ~ is convergent. 
To that end we will need the following lemma, which belongs to linear algebra. 

Lemma 3.2. Suppose we are given a number B > 0 and a matrix 

a=plalal211 AI2 A22 



Differential  games with ellipsoidal penalties 657 

whereA11 e ~rxr, A12 E ~rxs,  A22 E ~ s x s .  Let  the mat r ixA be symmetric,  the matrix B = A l l -  ~ E  r 

positive-semidefinite, and the matrix C = A22 + ~IE s negative-semidefinite. Then  the matrixA is invertible 
and II A-1 II---1/g. 

Proof. Given an arbitrary vector x • R r + s, partition it into two vectors 

x = , where x I~ R r, x 2 •  
x 2 

Then 

A x = y =  

SinceAll = B + WEr, A22 = C - pYE s, it follows that 

Yl = BXl +Al2X2+~tXl  , 

Consequently 

, Yl --- AllXl +A12x2, Y2 = A~2xn +A22x2 
Yl T 

where 
Y2 

Y2 = Ar2xl  + Cx2 - ~x2 

IAxl e = lyl e = [ynl e + lyel e = 

= Iexl + A~ex2] e + 2~txr(exl  + Al2Xe) + ~l~ll  2 + 

+[Alr2x, +Cx212_2~tx2(AI2x ' r  + Cx2)+ 21x21 > 
>_ 2ll(xr(Bxn r r + A12X 2) -x2(Al2X I + Cx2)) + ~t2lxl 2 = 

= 2tl(xrBxx r -- X 2 Cx2 ) -I- ~21x12 _> ~21x12 

Therefore, [Ax I > ~t Ix l. Hence the matrixA is invertihle and IIA -111 < 1/kt. 

Le t  the matrices P~I and P~2 be d e f n e d  by formula  (3.4). D e f n e  a number  

la = m i n { 1 -  P ~ 2 ,  l -  P~'l } (3 .6)  

L e m m a  3.3. Suppose condit ion (3.5) holds. Then  for  any W ~ ~m, the matrix H(W) is invertib!e and 

IIw'(v)ll-< 1/. 
Proof. By Lemrna 2.1, the matrices H~I, H~2, P~I - H~I and P~2 - H2U2 are positive-semidefinite.  It follows 

from the condition I I PY11[ -< 1 - ~t that the matrix (1 - ~t)Er-PI~ is positive-semidefinite. Hence  the matrix 

H i , - ~ t e  r = ( 1 - ~ ) E  r+ H ~ I - H I I  = ( (1-[ I , )F ,  r - P l l )  + ( P ~ I - H / ' )  +H~I 

is also positive-semidefinite. Similarly, the matrix H22 -F p.E s is negative-semidefinite.  Apply L e m m a  
3.2, we obtain the requi red  assertion. 

L e m m a  3.4. The  mapping W ~-> H(W) is Lipschitz cont inuous  with constant  

II  lneo(t)ll u o u 2 , . . e . ( t ) . .  o 
LH = L n +  Ltt; Ln  = j 2 L t t =  2 (3.7) ' .I 2 

0 Tu(t) 0 Tv (t) 

Proof. Fix arbitrary vectors y, A~ ~ R m. If follows from formula (2.4) that 

o rp o T 2 
rY , ( t ) y .  e(Y Pu(t)¥) . 

y r H u ( v ) y  = I .----z------~. d t -  I ~ .at 
o au(t '  ¥)  ~o ou(t ,¥)  

Using formula (1.13), let us evaluate the derivative 

d r 
d I = -~-ty H u ( ¥  + tAv)y 
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at the point t = 0 

<3Cd(YTP”wYhb7GG 
- I 

0 Y2W 

dt I 3C[~!f$$dt),y,2,Ay, 

where 

C = max 
t 

’ x3 
XE R (, +n*)3'*+(l +x*)5'* 1 

= 4 . s-5” < 2 
3 

Consequently, the mapping y H H,(w) is Lipschitz continuous with constant Lg. Similarly, the mapping 
w H H,(w) is Lipschitz continuous with constant L& 

Theorem 3.1. Suppose condition (3.5) holds and let v. E R” be a given vector. Suppose the sequence 
{r+rk} is defined by Newton’s method, 

yk+l = yk + (H(%))-‘(ZO - D(yk)) (3.8) 

The error in the solution of the equationD(v) = z. at step k of method (3.8) is defined as the number 

6k = $lDtyr,) - 201 

where the number u and LH are defined by formulae (3.6) and (3.7), respectively. Suppose the error 
of initial approximation is less than 1 

so< 1 (3.9) 

Then Newton’s method (3.8) will converge to a solution of the equation D(v) = z. at a quadratic rate: 

6 k+l ‘s: (3.10) 

Proof. Since by Lemma 3.4 the matrix-valued function H(w) is Lipschitz continuous with constant 
LH, it follows from Taylor’s formula that 

From formula (3.8) we obtain D(vk) + H(vk)(vk + 1 - vk) = ZO. Therefore 

1 
jD(Wk+I)-ZOI s-L Iv 2 H k+l - Wk/* (3.11) 
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Since by Lemma 3.3 IIH-I(w)II - 1/~t, it follows by virtue of (3.8) that 

IYk +1 - Ykl < IO(vk) - zo l /~  

Hence, b~¢ inequality (3.11), we obtain relation (3.10). It follows from (3.9) and (3.10) by induction 
that 8k < 52 ---> 0 as k ---> 0o. The theorem is proved. 

As is well known, if the initial approximation is insufficiently accurate, Newton's method may diverge. 
It is thus very important to establish an initial approximation from which Newton's method will converge. 
We will consider a possible method of obtaining an initial approximation which ensures that Newton's 
method will be convergent. 

Lemrna 3.5. Suppose condition (3.5) holds. Define a natural number N by the condition 

N > 21zolL,d t 2 (3.12) 

Define 

z k = kzolN,  V ° = O, V°+l  = ¥ ° + ( H ( v ° ) ) - I ( z k - D ( ¥ ° ) ) ,  k e  {1, . ,N} (3.13) 

Then the vector ~0 = ~o  satisfies inequality (3.9). 

Proof. As in the proof of inequality (3.10), we will prove by induction that the following inequality holds for 
k e  {1 . . . . .  N} 

Io(¥ °) - zkl-< mlzolm 

Together with condition (3.12), this yields the desired inequality (3.9). 

We will now consider the question of the mutual dependence of condition (3.5), which guarantees 
the convergence of  Newton's method, and the condition that the matrices Pu + euF1eu and Pu - PuFlPu 
be positive-semidefinite which, by Theorem 1.1, guarantees the existence of a saddle point of the 
differential game 91.1)-(1.3). 

L e m m a  3.6. Suppose we are given 

0 - E  s AI 2 A22 

w h e r e  A l l  E ~ r  x r, A12 E ~ r  x s, A22 E ~s  x s. L e t  A b e  a symmetric positive-semidefinite mat r ix .  T h e n  
(1) the inequality IlA2211 _< 1 implies that the matrixA + A F A  is positive-semidefinite, and (2) the 
converse is false. 

Proofl.  Let IIA2211 _< 1. We must show that the matrixA +AFA is positive-semidefinite. Suppose the contrary: 
a vector Xo e R r ÷ s: x~ (A + AFA)xo < 0 exists. Since A is symmetric and positive-semidefinite, a matrix S 
~ m  x (r + s) exists (where m is the rank of A) such thatA = SrS. Consequently, a vector y0 = Sx 0 ~ R rn exists such 
that 7o (Era -1" SFST)yo < 0. Therefore, 

min yr ( E m + SFsr)y  < 0 
ye R'n: lyl= 1 

Suppose the minimum is obtained for a vector yl. Then a number ~. exists such thatyl is a stationary point of the 
Lagrange function 

Y ~ yr(E m + SFsr)y  _ ~.yry 

that is 

Since 

(Era + SFSr)Yl = kYl (3.14) 

nfin yr(E m + SFsr)y  = yr(E m + SFSr)yl = kylrYl < 0 
y e R=: lyl = 1 

it follows that ~, < 0 andyl ~ 0. 
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It follows from Eq. (3.14) that ST(Era + SFSr)yl = L.~ryl, and so (S T + AFSr)yl  = ~S~yl, that is 

(Er+ s + A F ) z  = ~,Z (3.15) 

where z = Sty1 ~ R ~ ÷ s. Since the columns of the matrix S r are linearly independent and Yl ¢ 0, it follows that 
z~O. 

We write 

Z I , ~r ,  ~s  
z = where  Z I E r 2 

Z2 

Then Eq. (3.15) becomes a system 

zl  + A l l z l - A i 2 z 2 - ~ , Z l  ..~ 0 

l" 
Z 2+AI2z  I - A 2 2 z  2 -~ , z  2 ---- 0 

Multiplying the first equation of the system on the left by ~,  the second equation by z~ and adding, we obtain the 
equation 

zr(AIi + (1 - ~,)Er)Z t + zr ( ( l  - ~,)E s - A22)z 2 ---- 0 (3.16) 

Since X < 0 and the matrixAll is positive-semidefinite, it follows that the matrixAll + (1 - ~,)E r is positive-definite. 
Since X < 0 and IIA22 II _< 1, the matrix (1 - ~,)Es -A22  is positive-definite. Hence Eq. (3.16) contradicts the condition 
z~O. 

We will now show that the fact that the matrixA + AFA is positive-semidefinite does not necessarily imply that 
IIA2211 <- 1. Let 

A = I 5/22 ' 2  2 F =  0-1 01 

Then the matrices A and 

are positive-definite, but 11A2211 = 2 > 1. 

a a a=X119'43 J3 2 

Remark 3.3. Suppose the conditions of Theorem 3.1 are satisfied: [[P~2U_ < 1 and [[P~II[ < 1. Then by 
Lemma 3.6 the matrix Pu + PuF1Pu is positive-semidefinite. Similarly, the matrix P~ -P~FIP ~ is positive-semidefinite. 
Hence, by Theorems 1.1 and 1.2, the differential game has a saddle point, and formulae (1.15) and (1.16) for the 
optimal strategies and the guaranteed result are valid. 

4. A D I F F E R E N T I A L  G A M E  W I T H  P U R E L Y  G E O M E T R I C A L  
C O N S T R A I N T S  ON T H E  P U R S U E R ' S  C O N T R O L  

In this section, we will consider a differential game (DG) (1.1)-(1.3) such that the terminal term 
f f ( O ) F x ( d ) / 2  of the performance index is a convex function, that is, the matrix F is positive-semidefinite. 
In that case player u, minimizing the performance index, will strive to reduce the length of the phase 
vector. Player a~ will strive to increase the length of the phase vector. In that sense, we shall call player 
u the pursuer and player v the evader. 

We shall consider a DG for which Tu(t) = 0. Such a D G  will be denote by DG0 and referred to as a 
D G with purely geometrical constraints on the pursuer's control. 

A DG for which %(0 = e __- 0 will be denote by DGe. For any admissible programmed controls 
u ~ U, a~ ~ V, the value of the performance index in DGE will be denoted by J~(u, ~). 

An optimal programmed strategy for the pursuer in a DG~ will be denoted by ~E and called an 
e-strategy for the pursuer in the DG0. 

Such as e-strategy t~e has two advantages over an exact optimal guaranteed strategy t~ 0. First, an 
e-strategy is a Lipschitz continuous function of time and the game parameters. Second, the algorithm 
that computes an e-strategy is simple and effective from a computational standpoint. One should bear 
in mind that as e ~ 0 the Lipschitz constants of the e-strategy tend to infinity, while the rate of 
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convergence of the algorithms decreases. Accordingly, the parameter 13 characterizing the accuracy of 
the 13-strategy should not be taken too small. 

Theorem 4.1. Let the matrix F be positive-semidefinite and 1[/5~ II < 1. Then the DG0 has a saddle 
point (rio, %) in the class of programmed strategies. The value of the performance index guaranteed 
by the pursuer's e-strategy is at most the exact value of the optimal guaranteed result plus 130: 

J0(fiv t0 < J0(fio, f)0) + 130 V1) e V (4.1) 

and the pursuer's e-strategy is defined by the formula 

~ c ( t )  = 
G-u l(t)Br (t)~r (t)W 

J132 at" ~/r p~(t)¥ 

The vector of conjugate variables ~t is a solution of the equation D(~) = z0, where 

0 0 

Pu(t)llt d t -  I Pv(t)¥ dt 
Zo = O(0)x0, O(~) = ~ + J e2 + ~ r P , ( t ) ~  0JT2o(t) + ~rPo(t)q 

Proof. Since the matrixF is positive-semidefinite, it follows that for any strategy ~ ~ Vthe functional 
u ~ Jo(u, a~) is convex on the set U. Since the matrices/5 and Em - / 5  are positive-semidefinite, the 
same is true of the matrix P~ - Pa~FlPv, where F1 = Em. Hence, as in the proof of Lemma 1.2, we infer 
that the functional a) ,--> Jo(u, ~) is concave on the set V for any strategy u e U. 

As in the proof of Lemma 1.5, it can be shown that the functional Jo(u, ~) is lower semicontinuous 
in u and upper semicontinuous in v in the weak topology of the spaces L~, Lq 2, respectively. Since by 
Lemma 1.3 the sets U and V are convex and compact in those topologies, l~eumann's Theorem implies 
the existence of a saddle point (rio, %) of the functional J0. 

It follows from formulae (1.20) and (1.3) that for any admissible programmed strategies u a U, 
a )~g .  

Je(u, v) < Jo(u, v) < J¢(u, v) + EO 

Therefore, for any admissible programmed strategy v ~ V, we have the inequalities 

Jo(fiv v) < Je(fiv v) + eO < Je(fiv ~ )  + 130 

Hence, since moreover 

Je(fiv f)t) = minmaxJe(u, v) < minmaxJ0(u, v) = Jo(fio, f)0) 
uE U1J~ V ue  Uv~ V 

we obtain inequality (4.1). The expression for the e-strategy follows from formula (1.5). 
Applying Theorem 3.1 to a DG~, we obtain the following theorem, establishing the convergence of 

Newton's method for computing the vector qt from which the pursuer's e-strategy is determined. 

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied. Let {qt n} be a sequence defined 
by formula (3.8), with the initial approximation g~0 = ~o defined by formula (3.13) with 

N > 2]Zo]ffn, IIP'(t)ll3 z IIv°(t)l[3 N 
_ vt 2 v t= l - I lPd l ,  a0( E2 +T o(t) )ldt (4.2) 

Then the sequence {~n} converges to a solution of the equation D(~) = z0 at a quadratic rate: 

8 

ID(~.. ,)-Zol < 2~2ID(w.)-zol 2 



662 G. Ye. Ivanov 

Remark 4.1. Since the matrix Pu(t) is independent of ~'u(t), formula (1.9) implies that IIP. II - 1/e. Therefore, 
for sufficiently small e, inequality (2.6) will fail to hold and the simple iteration method described in Theorem 2.1 
may diverge. 

Remark 4.2. If the matrix F is positive-semidefinite and moreover ]I_P~ 11 < 1, then by Lemma 3.1 the function 
e(~) is convex. Therefore, by Remark 3.1, the vector of conjugate variables ~ is a minimum point of the function 

v ~" e(v) - VrZo. 

Remark 4.3. It follows from formula (4.2) that N - 1/6 2 as e --+ +0. For small e, therefore, the number Nbecomes 
very large. In that case the algorithm determining the initial approximation ~0 given by formula (3.13) may be very 
time-consuming. It may well be more effective to use well-known convex optimization algorithms to approximate 
the minimum point of the convex function ~ ~ e (~) - ~trz0" Experience in numerical computations shows that in 
many case Newton's method (3.8) converges from the initial approximation ~0 = 0. In such cases there is no longer 
any need to run the time-consuming algorithm (3.13). 

5. D I F F E R E N T I A L  G A M E S  W I T H O U T  G E O M E T R I C A L  C O N S T R A I N T S  
ON T H E  P L A Y E R S '  C O N T R O L S  

We will now consider the limiting case of DG (1.1)-(1.3) with 

Go(t) = eG°(t) ,  70(0 = l /e,  e--4 +0 (5.1) 

where G°(t) is a given symmetric positive-definite matrix which is a piecewise-continuous function of 
the time t. 

Having in mid the limit relation 

~ /  (~ ~1 ~vl r-o''v+o(1)c%it) as ~ + 0  ~o(t, o) = l - v r G o . t . v  = - 

let us say that the limiting case of D G  (1.1)-(1.3) under conditions (5.1) is DG (1.1), (1.2), where 

1 T  0 ~u(t, u) = ~/~(t)~/1 -urGu(t)u [3v(t, v) = -~v  Go(t)v (5.2) 

We define a matrix-valued function 

P°o(,) = ¢~(t)Bv(t)(G°o(t)) -I Bro(t)@r(t) (5.3) 

Then, in accordance with the notation (1.9), 

P,(t) = ~(t)B.(t)G-ul(t)Br.(t)#hr(t) 
o 0 

Po" I'°(') 
0 0 

Repeating the arguments used to prove Theorems 1.1 and 1.2, we obtain the following theorem. 

Theorem 5.1. Let  the matrices/~u + euF1eu andPu -Pa~F1Pu be positive-semidefinite. Then DG (1.1), 
(1.2), (5.2) has a saddle point in the class of programmed strategies. The players' optimal programmed 
strategies are defined by the formulae 

fi(t) = G-ul(t)Bru(t)~r(t)~, ~(t) = (G°v(t))-lBrv(t)d~r(t)~ (5.4) 
o.(t, ¥) 

The vector of conjugate variables ~ is determined from the equation D(~)  = z0, where 

O 

O(V ) -- F l Y +  I P u : t ) ¥ . d t - P v ~ ,  Z 0 = * ( O ) x  0 
a.it, ¥ )  

0 
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The value function of the DG (the optimal guaranteed result) is defined by the formula 

O 

0 

(5.5) 

The solution of the equation D(~) = z0 may be found by a simple iterative method or by Newton's 
method, as was done in Theorems 2.1 and 3.1. 

Similar reasoning may be applied to the limiting case of DG (1.1)-(1.3) under conditions (5.1) with 
a~ replaced by u. 

In the limiting case in which conditions (5.1) hold simultaneously with the same conditions for player 
u, DG (1.1)-(1.3) becomes the well-known linear-quadratic DG [1, p. 160]. 

6. AN E X A M P L E  OF A D I F F E R E N T I A L  G A M E  

As an example, we will consider two DGs of the form (1.1)-(1.3) with parameters n = 4,p = q = 2, 
t~ = 12, F = E4, Gu = Gv = E2, ~/v(t) = 16 

X 0 = 911 4 

8 

7 

A(t )  = 

0.1 0.9 -0.1 0.1 
-1 .0 -0 .2  0.2 -0.3 

0.3 0.1 0.1 1.5 

-0.1 0.2 -1 .4-0 .3  

Bu( t )  = 

1.0 0.2 , 

0.3 -0.3 Bo(t ) = 
-0.1 0.9 

0.5 -0.2 

0.7 0.1 

1.2 0.2 

0.1 -0.3 

-0.3 1.1 

For the first DG, ~/ua(t) = 5, while for the second, y2(t) = 0.5. 
Numerical computations yield the following values of the vectors of conjugate variables for the first 

and second DGs 

ii 90311 ii 72311 I -1.65 2 = -1 .44 

= 0.178 ' 0.376 

6.06 4.78 

Figure 1 illustrates the hodographs of the optimal control vectors for players u and ~). Figure 2 shows 
projections of the trajectories of the phase vector x(t) corresponding to optimal controls. The graphs 
for the first DG are the solid curves while those for the second are the dashed curves. 

The graphs shown in the figures clearly demonstrate some properties of DGs with ellipsoidal 
penalties.The DGs considered are distinguished only by the penalty coefficient, which indicates the 
dependence of the performance index on player u's control. Since the penalty coefficient in the second 
DG is smaller, player u's optimal control in that DG is greater in absolute value and closer to the 
boundary of admissible values (see Fig. 1). As a result, at the final instant of time the absolute value 
of the phase vector in the second DG is less than in the first (see Fig. 2). 

In these DGs, the terminal term of the performance index equals the squared length of the phase 
vector. The derivative of the performance index with respect to the phase vector will therefore decrease 
as the absolute value of the phase vector decreases. Since in the second DG the absolute value of the 
phase vector at the final instant of time is smaller, the control of player ~ in the second DG has less 
influence on the value of the terminal term than in the first. In the second DG, therefore, it is more 
advantageous for player v to choose a control of smaller absolute value than in the first game. In this 
way player ~ can decrease the penalty term of the performance index. It can be seen in Fig. 1 that the 
absolute value of the optimal control of player a9 in the second DG is indeed less than in the first. 
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